Author:
Salman Zafar,Muhammad Abdullah,Piran Md Jalil,Han Dongil
Abstract
Plant diseases pose a major threat to agricultural production and the food supply chain, as they expose plants to potentially disruptive pathogens that can affect the lives of those who are associated with it. Deep learning has been applied in a range of fields such as object detection, autonomous vehicles, fraud detection etc. Several researchers have tried to implement deep learning techniques in precision agriculture. However, there are pros and cons to the approaches they have opted for disease detection and identification. In this survey, we have made an attempt to capture the significant advancements in machine-learning based disease detection. We have discussed prevalent datasets and techniques that have been employed as well as highlighted emerging approaches being used for plant disease detection. By exploring these advancements, we aim to present a comprehensive overview of the prominent approaches in precision agriculture, along with their associated challenges and potential improvements. This paper delves into the challenges associated with the implementation and briefly discusses the future trends. Overall, this paper presents a bird’s eye view of plant disease datasets, deep learning techniques, their accuracies and the challenges associated with them. Our insights will serve as a valuable resource for researchers and practitioners in the field. We hope that this survey will inform and inspire future research efforts, ultimately leading to improved precision agriculture practices and enhanced crop health management.
Funder
Ministry of Science and ICT, South Korea
National Research Foundation of Korea
Rural Development Administration
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献