A new model based on improved VGG16 for corn weed identification

Author:

Yang Le,Xu Shuang,Yu XiaoYun,Long HuiBin,Zhang HuanHuan,Zhu YingWen

Abstract

Weeds remain one of the most important factors affecting the yield and quality of corn in modern agricultural production. To use deep convolutional neural networks to accurately, efficiently, and losslessly identify weeds in corn fields, a new corn weed identification model, SE-VGG16, is proposed. The SE-VGG16 model uses VGG16 as the basis and adds the SE attention mechanism to realize that the network automatically focuses on useful parts and allocates limited information processing resources to important parts. Then the 3 × 3 convolutional kernels in the first block are reduced to 1 × 1 convolutional kernels, and the ReLU activation function is replaced by Leaky ReLU to perform feature extraction while dimensionality reduction. Finally, it is replaced by a global average pooling layer for the fully connected layer of VGG16, and the output is performed by softmax. The experimental results verify that the SE-VGG16 model classifies corn weeds superiorly to other classical and advanced multiscale models with an average accuracy of 99.67%, which is more than the 97.75% of the original VGG16 model. Based on the three evaluation indices of precision rate, recall rate, and F1, it was concluded that SE-VGG16 has good robustness, high stability, and a high recognition rate, and the network model can be used to accurately identify weeds in corn fields, which can provide an effective solution for weed control in corn fields in practical applications.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference35 articles.

1. Neural machine translation by jointly learning to align and translate;Bahdanau;Comput. Sci.,2014

2. Plant disease identification from individual lesions and spots using deep learning;Barbedo;Biosyst. Eng.,2019

3. Identification of fruits using deep learning approach;Bongulwar Deepali;IOP Conf. Series: Materials Sci. Eng.,2021

4. Automated recognition of optical image based potato leaf blight diseases using deep learning;Chakraborty;Physiol. Mol. Plant Pathol.,2021

5. Multi-channel feature fusion networks with hard coordinate attention mechanism for maize disease identification under complex backgrounds;Fang;Comput. Electron. Agric.,2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3