Wetting and deposition characteristics of air-assisted spray droplet on large broad-leaved crop canopy

Author:

Jiang Yinlong,Yang Zhou,Xu Xing,Shen Dongying,Jiang Tingting,Xie Bowei,Duan Jieli

Abstract

Precision and efficient pesticide spraying is an important part of precision agriculture, banana is a large broad-leaved plant, with pests and diseases, has a high demand for spraying and pest control. The purpose of this study was to clarify the wettability of different pesticides on the banana leaf surface, and the effects of nozzle type and working parameters on the deposition distribution performance under air-assisted spray conditions. The wettability test results of different pesticides on banana leaf surfaces showed that the wettability of the adaxial side was always stronger than that of the abaxial side, the smaller the surface tension of the droplets, the better the wettability on the surface. The spray experiment was carried out on the previously developed air-assisted sprayer with the latest developed intelligent variable spray control system. Three types of nozzles were used to spray with different combinations of working parameters. The deposition distribution performance on the banana leaf surface was obtained by image processing using a self-compiled program. The experimental results show that the nozzle type, wind speed, and spray pressure have significant effects on the deposition distribution performance. Through the study of the interaction and coupling effect of nozzle type and working parameters on the spray droplet deposition distribution on both sides of banana leaves, the results show that under the conditions of hollow cone nozzle, 0.5Mpa spray pressure and 3-5 m/s wind speed, the spray coverage and droplet density are in the optimal state. This is mainly due to the low spray pressure and/or wind speed is not enough to make the banana leaves vibrate and improve the performance of pesticide deposition. excessive spray pressure and/or wind speed will cause large deformation of banana leaves and make them airfoil stable, which reduces the surface deposition performance. It is of great significance for promoting sustainable and intelligent phytoprotection.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3