Characterization of GmMATE13 in its contribution of citrate efflux and aluminum resistance in soybeans

Author:

Wang Zhengbiao,Liu Yuanqi,Cui Wenmo,Gong Li,He Ying,Zhang Qingxiu,Meng Xiangxiang,Yang Zhenming,You Jiangfeng

Abstract

Citrate exudation mediated by a citrate transporter of the MATE protein family is critical for resisting aluminum (Al) toxicity in soybeans. However, the expression patterns of citrate transporter genes differ under Al stress. Thus, exploring the responsive pattern of GmMATEs in response to Al stress is of great importance to understand the Al resistance mechanism in soybeans. In the present study, the phylogenetic analysis, transcriptionally expressed pattern, and function of GmMATE13 were investigated. The results show that soybean GmMATE13 is highly homologous to known citrate transporter proteins from other plants. Under Al exposure, the transcript abundance of GmMATE13 was increased during a 24 h Al treatment period. The expression of GmMATE13 is specifically induced by Al exposure, but not by the status of Fe, Cu, Cd, or La. Moreover, it was also highly increased when soybean seedlings were grown on acidic soil with a high Al content. Subcellular localization showed that GmMATE13 was localized on the plasma membrane when it was transiently expressed in Arabidopsis protoplasts. Investigation of tissue localization of GmMATE13 expression by investigating GUS activity staining under control of the GmMATE13 promoter showed that it was mainly expressed in the central cylinder in the root tips of the soybean under Al-free conditions, yet extended to cortical and epidermis cells under Al stress. Finally, overexpressing GmMATE13 in soybean hairy roots enhanced Al resistance by increasing citrate efflux. Collectively, we conclude that GmMATE13 is a promising candidate to improve the resistance of soybean to Al toxicity in acidic soil.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3