The 26S Proteasome Regulatory Subunit GmPSMD Promotes Resistance to Phytophthora sojae in Soybean

Author:

Liu Tengfei,Wang Huiyu,Liu Zhanyu,Pang Ze,Zhang Chuanzhong,Zhao Ming,Ning Bin,Song Bo,Liu Shanshan,He Zili,Wei Wanling,Wu Junjiang,Liu Yaguang,Xu Pengfei,Zhang Shuzhen

Abstract

Phytophthora root rot, caused by Phytophthora sojae is a destructive disease of soybean (Glycine max) worldwide. We previously confirmed that the bHLH transcription factor GmPIB1 (P. sojae-inducible bHLH transcription factor) reduces accumulation of reactive oxygen species (ROS) in cells by inhibiting expression of the peroxidase-related gene GmSPOD thus improving the resistance of hairy roots to P. sojae. To identify proteins interacting with GmPIB1 and assess their participation in the defense response to P. sojae, we obtained transgenic soybean hairy roots overexpressing GmPIB1 by Agrobacterium rhizogenes mediated transformation and examined GmPIB1 protein–protein interactions using immunoprecipitation combined with mass spectrometry. We identified 392 proteins likely interacting with GmPIB1 and selected 20 candidate genes, and only 26S proteasome regulatory subunit GmPSMD (Genbank accession no. XP_014631720) interacted with GmPIB1 in luciferase complementation and pull-down experiments and yeast two-hybrid assays. Overexpression of GmPSMD (GmPSMD-OE) in soybean hairy roots remarkably improved resistance to P. sojae and RNA interference of GmPSMD (GmPSMD -RNAi) increased susceptibility. In addition, accumulation of total ROS and hydrogen peroxide (H2O2) in GmPSMD-OE transgenic soybean hairy roots were remarkably lower than those of the control after P. sojae infection. Moreover, in GmPSMD-RNAi transgenic soybean hairy roots, H2O2 and the accumulation of total ROS exceeded those of the control. There was no obvious difference in superoxide anion (O2) content between control and transgenic hairy roots. Antioxidant enzymes include peroxidase (POD), glutathione peroxidase (GPX), superoxide dismutase (SOD), catalase (CAT) are responsible for ROS scavenging in soybean. The activities of these antioxidant enzymes were remarkably higher in GmPSMD-OE transgenic soybean hairy roots than those in control, but were reduced in GmPSMD-RNAi transgenic soybean hairy roots. Moreover, the activity of 26S proteasome in GmPSMD-OE and GmPIB1-OE transgenic soybean hairy roots was significantly higher than that in control and was significantly lower in PSMD-RNAi soybean hairy roots after P. sojae infection. These data suggest that GmPSMD might reduce the production of ROS by improving the activity of antioxidant enzymes such as POD, SOD, GPX, CAT, and GmPSMD plays a significant role in the response of soybean to P. sojae. Our study reveals a valuable mechanism for regulation of the pathogen response by the 26S proteasome in soybean.

Funder

National Science Foundation

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3