An Apoplastic Effector Pat-1Cm of the Gram-Positive Bacterium Clavibacter michiganensis Acts as Both a Pathogenicity Factor and an Immunity Elicitor in Plants

Author:

Hwang In Sun,Oh Eom-Ji,Song Eunbee,Park In Woong,Lee Yoonyoung,Sohn Kee Hoon,Choi Doil,Oh Chang-Sik

Abstract

Clavibacter michiganensis, a Gram-positive plant-pathogenic bacterium, utilizes apoplastic effectors for disease development in host plants. Here, we determine the roles of Pat-1Cm (a putative serine protease) in pathogenicity and plant immunity. Pat-1Cm was found to be a genuine secreted protein, and the secreted mature form did not carry the first 33 amino acids predicted to be a signal peptide (SP). The pat-1Cm mutant impaired to cause wilting, but still caused canker symptom in tomato. Moreover, this mutant failed to trigger the hypersensitive response (HR) in a nonhost Nicotiana tabacum. Among orthologs and paralogs of pat-1Cm, only chp-7Cs from Clavibacter sepedonicus, a potato pathogen, successfully complemented pat-1Cm function in pathogenicity in tomato, whereas all failed to complement pat-1Cm function in HR induction in N. tabacum. Based on the structural prediction, Pat-1Cm carried a catalytic triad for putative serine protease, and alanine substitution of any amino acids in the triad abolished both pathogenicity and HR-inducing activities of Pat-1Cm in C. michiganensis. Ectopic expression of pat-1Cm with an SP from tobacco secreted protein triggered HR in N. tabacum, but not in tomato, whereas a catalytic triad mutant failed to induce HR. Inoculation of the pat-1Cm mutant mixed with the mutant of another apoplastic effector CelA (cellulase) caused severe wilting in tomato, indicating that these two apoplastic effectors can functionally cooperate in pathogenicity. Overall, these results indicate that Pat-1Cm is a distinct secreted protein carrying a functional catalytic triad for serine protease and this enzymatic activity might be critical for both pathogenicity and HR-eliciting activities of Pat-1Cm in plants.

Funder

National Research Foundation of Korea

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3