Raman Spectroscopy Enables Confirmatory Diagnostics of Fusarium Wilt in Asymptomatic Banana

Author:

Parlamas Stephen,Goetze Paul K.,Humpal Dillon,Kurouski Dmitry,Jo Young-Ki

Abstract

Fusarium oxysporum f. sp. cubense (FOC) causes Fusarium wilt, one of the most concerning diseases in banana (Musa spp.), compromising global banana production. There are limited curative management options after FOC infections, and early Fusarium wilt symptoms are similar with other abiotic stress factors such as drought. Therefore, finding a reliable and timely form of early detection and proper diagnostics is critical for disease management for FOC. In this study, Portable Raman spectroscopy (handheld Raman spectrometer equipped with 830 nm laser source) was applied for developing a confirmatory diagnostic tool for early infection of FOC on asymptomatic banana. Banana plantlets were inoculated with FOC; uninoculated plants exposed to a drier condition were also prepared compared to well-watered uninoculated control plants. Subsequent Raman readings from the plant leaves, without damaging or destroying them, were performed weekly. The conditions of biotic and abiotic stresses on banana were modeled to examine and identify specific Raman spectra suitable for diagnosing FOC infection. Our results showed that Raman spectroscopy could be used to make highly accurate diagnostics of FOC at the asymptomatic stage. Based on specific Raman spectra at vibrational bands 1,155, 1,184, and 1,525 cm−1, Raman spectroscopy demonstrated nearly 100% accuracy of FOC diagnosis at 40 days after inoculation, differentiating FOC-infected plants from uninoculated plants that were well-watered or exposed to water deficit condition. This study first reported that Raman spectroscopy can be used as a rapid and non-destructive tool for banana Fusarium wilt diagnostics.

Funder

Texas A&M University

Publisher

Frontiers Media SA

Subject

Plant Science

Reference40 articles.

1. Carotenoids-their resonance Raman spectra and how they can be helpful in characterizing a number of biological systems;Adar;Spectroscopy,2017

2. Raman imaging to investigate ultrastructure and composition of plant cell walls: distribution of lignin and cellulose in black spruce wood (Picea Mariana);Agarwal;Planta,2006

3. Determination of amylose content in starch using Raman spectroscopy and multivariate calibration analysis;Almeida;Anal. Bioanal. Chem.,2010

4. In vivo diagnostics of early abiotic plant stress response via Raman spectroscopy;Altangerel;Proc. Natl. Acad. Sci. U. S. A.,2017

5. The top 10 fungal pathogens in molecular plant pathology;Dean;Mol. Plant Pathol.,2012

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3