Approaches Involved in the Vegetable Crops Salt Stress Tolerance Improvement: Present Status and Way Ahead

Author:

Behera Tusar Kanti,Krishna Ram,Ansari Waquar Akhter,Aamir Mohd,Kumar Pradeep,Kashyap Sarvesh Pratap,Pandey Sudhakar,Kole Chittaranjan

Abstract

Salt stress is one of the most important abiotic stresses as it persists throughout the plant life cycle. The productivity of crops is prominently affected by soil salinization due to faulty agricultural practices, increasing human activities, and natural processes. Approximately 10% of the total land area (950 Mha) and 50% of the total irrigated area (230 Mha) in the world are under salt stress. As a consequence, an annual loss of 12 billion US$ is estimated because of reduction in agriculture production inflicted by salt stress. The severity of salt stress will increase in the upcoming years with the increasing world population, and hence the forced use of poor-quality soil and irrigation water. Unfortunately, majority of the vegetable crops, such as bean, carrot, celery, eggplant, lettuce, muskmelon, okra, pea, pepper, potato, spinach, and tomato, have very low salinity threshold (ECt, which ranged from 1 to 2.5 dS m–1 in saturated soil). These crops used almost every part of the world and lakes’ novel salt tolerance gene within their gene pool. Salt stress severely affects the yield and quality of these crops. To resolve this issue, novel genes governing salt tolerance under extreme salt stress were identified and transferred to the vegetable crops. The vegetable improvement for salt tolerance will require not only the yield influencing trait but also target those characters or traits that directly influence the salt stress to the crop developmental stage. Genetic engineering and grafting is the potential tool which can improve salt tolerance in vegetable crop regardless of species barriers. In the present review, an updated detail of the various physio-biochemical and molecular aspects involved in salt stress have been explored.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3