Overexpression of Cinnamoyl-CoA Reductase 2 in Brassica napus Increases Resistance to Sclerotinia sclerotiorum by Affecting Lignin Biosynthesis

Author:

Liu Dongxiao,Wu Jian,Lin Li,Li Panpan,Li Saifen,Wang Yue,Li Jian,Sun Qinfu,Liang Jiansheng,Wang Youping

Abstract

Sclerotinia sclerotiorum causes severe yield and economic losses for many crop and vegetable species, especially Brassica napus. To date, no immune B. napus germplasm has been identified, giving rise to a major challenge in the breeding of Sclerotinia resistance. In the present study, we found that, compared with a Sclerotinia-susceptible line (J902), a Sclerotinia-resistant line (J964) exhibited better xylem development and a higher lignin content in the stems, which may limit the invasion and spread of S. sclerotiorum during the early infection period. In addition, genes involved in lignin biosynthesis were induced under S. sclerotiorum infection in both lines, indicating that lignin was deposited proactively in infected tissues. We then overexpressed BnaC.CCR2.b, which encodes the first rate-limiting enzyme (cinnamoyl-CoA reductase) that catalyzes the reaction of lignin-specific pathways, and found that overexpression of BnaC.CCR2.b increased the lignin content in the stems of B. napus by 2.28–2.76% under normal growth conditions. We further evaluated the Sclerotinia resistance of BnaC.CCR2.b overexpression lines at the flower-termination stage and found that the disease lesions on the stems of plants in the T2 and T3 generations decreased by 12.2–33.7% and 32.5–37.3% compared to non-transgenic control plants, respectively, at 7days post-inoculation (dpi). The above results indicate that overexpression of BnaC.CCR2.b leads to an increase in lignin content in the stems, which subsequently leads to increased resistance to S. sclerotiorum. Our findings demonstrate that increasing the lignin content in the stems of B. napus is an important strategy for controlling Sclerotinia.

Funder

National Natural Science Foundation of China

Jiangsu Agricultural Science and Technology Innovation Fund

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3