Triticale Improvement: Mining of Genes Related to Yellow Rust Resistance in Triticale Based on Transcriptome Sequencing

Author:

Zhao Fangyuan,Niu Kuiju,Tian Xinhui,Du Wenhua

Abstract

Yellow (stripe) rust caused by Puccinia striiformis f. sp. tritici (Pst) is a major destructive fungal disease of small grain cereals, leading to large yield losses. The breeding of resistant varieties is an effective, sustainable way to control yellow rust. Elucidation of resistance mechanisms against yellow rust and identification of candidate genes associated with rust resistance are thus crucial. In this study, seedlings of two Triticosecale Wittmack cultivars, highly resistant Gannong No. 2 and susceptible Shida No. 1, were inoculated with Pst race CYR34. Transcriptome sequencing (RNA-seq) was then used to investigate their transcriptional responses against pathogen infection before and after the appearance of symptoms—10 and 20 days after inoculation, respectively. According to the RNA-seq data, the number of upregulated and downregulated differentially expressed genes (DEGs) in the resistant cultivar was greater than in the susceptible cultivar. A total of 2,560 DEGs commonly expressed in the two cultivars on two sampling dates were subjected to pathway analysis, which revealed that most DEGs were closely associated with defense and metabolic activities. Transcription factor enrichment analysis indicated that the expressions of NAC, WRKY, and FAR1 families were also significantly changed. Further in-depth analysis of resistance genes revealed that almost all serine/threonine-protein kinases were upregulated in the resistant cultivar. Other genes related to disease resistance, such as those encoding disease-resistance- and pathogenesis-related proteins were differentially regulated in the two cultivars. Our findings can serve as a resource for gene discovery and facilitate elucidation of the complex defense mechanisms involved in triticale resistance to Pst.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3