Different responses of growth and physiology to warming and reduced precipitation of two co-existing seedlings in a temperate secondary forest

Author:

Yuan Junfeng,Yan Qiaoling,Wang Jing,Xie Jin,Li Rong

Abstract

Warming and precipitation reduction have been concurrent throughout this century in most temperate regions (e.g., Northeast China) and have increased drought risk to the growth, migration, or mortality of tree seedlings. Coexisting tree species with different functional traits in temperate forests may have inconsistent responses to both warming and decreased precipitation, which could result in a species distribution shift and change in community dynamics. Unfortunately, little is known about the growth and physiological responses of coexisting species to the changes in these two meteorological elements. We selected two coexisting species in a temperate secondary forest of Northeast China: Quercus mongolica Fischer ex Ledebour (drought-tolerant species) and Fraxinus mandschurica Rupr. (drought-intolerant species), and performed an experiment under strictly controlled conditions simulating the predicted warming (+2°C, +4°C) and precipitation reduction (-30%) compared with current conditions and analyzed the growth and physiology of seedlings. The results showed that compared with the control, warming (including +2°C and +4°C) increased the specific area weight and total biomass of F. mandschurica seedlings. These were caused by the increases in foliar N content, the activity of the PSII reaction center, and chlorophyll content. A 2°C increase in temperature and reduced precipitation enhanced root biomass of Q. mongolica, resulting from root length increase. To absorb water in drier soil, seedlings of both species had more negative water potential under the interaction between +4°C and precipitation reduction. Our results demonstrate that drought-tolerant species such as Q. mongolica will adapt to the future drier conditions with the co-occurrence of warming and precipitation reduction, while drought-intolerant species will accommodate warmer environments.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3