Exposure to strong irradiance exacerbates photoinhibition and suppresses N resorption during leaf senescence in shade-grown seedlings of fullmoon maple (Acer japonicum)

Author:

Kitao Mitsutoshi,Yazaki Kenichi,Tobita Hiroyuki,Agathokleous Evgenios,Kishimoto Junko,Takabayashi Atsushi,Tanaka Ryouichi

Abstract

Leaves of fullmoon maple (Acer japonicum) turn brilliant red with anthocyanins synthesis in autumn. Based on field observations, autumn coloring mainly occurs in outer-canopy leaves exposed to sun, whereas inner-canopy leaves remain green for a certain longer period before finally turn yellowish red with a smaller amount of anthocyanins. Here, we hypothesized that outer-canopy leaves protect themselves against photooxidative stress via anthocyanins while simultaneously shading inner canopy leaves and protecting them from strong light (holocanopy hypothesis). To test this hypothesis, we investigated photoinhibition and leaf N content during autumn senescence in leaves of pot-grown seedlings of fullmoon maple either raised under shade (L0, ≈13% relative irradiance to open) or transferred to full sunlight conditions on 5th (LH1), 12th (LH2), or 18th (LH3) Oct, 2021. Dry mass-based leaf N (Nmass) in green leaves in shade-grown seedlings was ≈ 30 mg N g-1 in summer. Nmass in shed leaves (25th Oct to 1st Nov) was 11.1, 12.0, 14.6, and 10.1 mg N g-1 in L0, LH1, LH2, and LH3 conditions, respectively. Higher Nmass was observed in shed leaves in LH2, compared to other experimental conditions, suggesting an incomplete N resorption in LH2. Fv/Fm after an overnight dark-adaptation, measured on 19th Oct when leaf N was actively resorbed, ranked L0: 0.72 > LH3: 0.56 > LH1: 0.45 > LH2: 0.25. As decreased Fv/Fm indicates photoinhibition, leaves in LH2 condition suffered the most severe photoinhibition. Leaf soluble sugar content decreased, but protein carbonylation increased with decreasing Fv/Fm across shade-grown seedlings (L0, LH1, LH2, and LH3) on 19th Oct, suggesting impaired photosynthetic carbon gain and possible membrane peroxidation induced by photooxidative stress, especially in LH2 condition with less N resorption efficiency. Although the impairment of N resorption seems to depend on the timing and intensity of strong light exposure, air temperature, and consequently the degree of photoinhibition, the photoprotective role of anthocyanins in outer-canopy leaves of fullmoon maple might also contribute to allow a safe N resorption in inner-canopy leaves by prolonged shading.

Funder

Japan Society for the Promotion of Science

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

Reference58 articles.

1. Lipids and proteins–major targets of oxidative modifications in abiotic stressed plants;Anjum;Environ. Sci. pollut. Res.,2015

2. The role of photoinhibition during tree seedling establishment at low temperatures;Ball,1994

3. Nitrogen storage and seasonal nitrogen cycling in Populus: bridging molecular physiology and ecophysiology;Cooke;New Phytol.,2005

4. Evolution and function of red pigmentation in land plants;Davies;Ann. Bot.,2022

5. Photoprotection and other responses of plants to high light stress;Demmig-Adams;Annu. Rev. Plant Physiol. Plant Mol. Biol.,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3