Dynamics of Deep Water and N Uptake of Oilseed Rape (Brassica napus L.) Under Varied N and Water Supply

Author:

Chen Guanying,Rasmussen Camilla Ruø,Dresbøll Dorte Bodin,Smith Abraham George,Thorup-Kristensen Kristian

Abstract

Enhanced nitrogen (N) and water uptake from deep soil layers may increase resource use efficiency while maintaining yield under stressed conditions. Winter oilseed rape (Brassica napus L.) can develop deep roots and access deep-stored resources such as N and water to sustain its growth and productivity. Less is known of the performance of deep roots under varying water and N availability. In this study, we aimed to evaluate the effects of reduced N and water supply on deep N and water uptake for oilseed rape. Oilseed rape plants grown in outdoor rhizotrons were supplied with 240 and 80 kg N ha−1, respectively, in 2019 whereas a well-watered and a water-deficit treatment were established in 2020. To track deep water and N uptake, a mixture of 2H2O and Ca(15NO3)2 was injected into the soil column at 0.5- and 1.7-m depths. δ2H in transpiration water and δ15N in leaves were measured after injection. δ15N values in biomass samples were also measured. Differences in N or water supply had less effect on root growth. The low N treatment reduced water uptake throughout the soil profile and altered water uptake distribution. The low N supply doubled the 15N uptake efficiency at both 0.5 and 1.7 m. Similarly, water deficit in the upper soil layers led to compensatory deep water uptake. Our findings highlight the increasing importance of deep roots for water uptake, which is essential for maintaining an adequate water supply in the late growing stage. Our results further indicate the benefit of reducing N supply for mitigating N leaching and altering water uptake from deep soil layers, yet at a potential cost of biomass reduction.

Funder

Villum Fonden

China Scholarship Council

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3