Estimating Maize Yield in the Black Soil Region of Northeast China Using Land Surface Data Assimilation: Integrating a Crop Model and Remote Sensing

Author:

Cui Ying,Liu Suhong,Li Xingang,Geng Hao,Xie Yun,He Yuhua

Abstract

Accurate yield estimation at the regional scale has always been a persistent challenge in the agricultural sector. With the vigorous emergence of remote sensing land surface observations in recent decades, data assimilation methodology has become an effective means to promote the accuracy and efficiency of yield estimation by integrating regional data and point-scale crop models. This paper focuses on the black soil area of Northeast China, a national strategic grain production base, applying the AquaCrop crop growth model to simulate the fractional vegetation cover (FVC) and maize yield from 2000 to 2020 and then forming a reliable FVC optimization dataset based on an ensemble Kalman filter (EnKF) assimilation algorithm with remote sensing products. Using the random forest model, the regression relationship between FVC and yield was established from the long-term time series data, which is crucial to achieve better yield estimation through the optimized FVC. The major findings include the following: (1) The R2 of the assimilated FVC and maize yield can reach 0.557. (2) When compared with the local statistical yield, our method reduced the mean absolute error (MAE) from 1.164 ton/ha (based on GLASS FVC products) to 1.004 ton/ha (based on the calibrated AquaCrop model) and then to 0.888 ton/ha (the result after assimilation). The above results show that we have proposed a yield estimation method to provide accurate yield estimations by combining data assimilation and machine learning. This study provided deep insights into understanding the variations in FVC and revealed the spatially explicit yield prediction ability from the time series land surface parameters, which has significant potential for optimizing water and soil resource management.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3