Estimating insect pest density using the physiological index of crop leaf

Author:

Chen Meng,Liu Xiang-Dong

Abstract

Estimating population density is a fundamental study in ecology and crop pest management. The density estimation of small-scale animals, such as insects, is a challenging task due to the large quantity and low visibility. An herbivorous insect is the big enemy of crops, which often causes serious losses. Feeding of insects results in changes in physiology-related chemical compositions of crops, but it is unknown whether these changes can be used to estimate the population density of pests. The brown planthopper (BPH), Nilaparvata lugens, is a serious insect pest hiding under rice canopy to suck the sap of rice stems. BPH density is a crucial indicator for determining whether the control using pesticides will be carried out or not. Estimating BPH density is still dependent on manmade survey and light-trap methods, which are time-consuming and low-efficient. Here, we developed a new method based on the physiological traits of rice leaves. The feeding of BPHs significantly decreased the contents of chlorophyll (the SPAD readings), water, silicon, and soluble sugar in rice leaves. Four ratio physiological indices based on these four physiological traits of the BPH-damaged rice leaves to those of healthy leaves were established, and they were significantly correlated with BPH density in rice plants. A rice growth stage-independent linear model based on the four ratio physiological indices and adding the other two variables, BPH damage duration and population increase rate, was developed. This model exhibited a reasonable accuracy for estimating BPH density. This new method will promote the development of density estimation of pest populations toward nonprofessionalization and automation.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3