Identification of Golovinomyces artemisiae Causing Powdery Mildew, Changes in Chlorophyll Fluorescence Parameters, and Antioxidant Levels in Artemisia selengensis

Author:

Guo Zhixin,Sun Xiaoyang,Qin Ligang,Dong Lili,Xiong Liangbing,Xie Fuchun,Qin Dong,Chen Yajun

Abstract

Artemisia selengensis Turcz. is a valuable edible and medicinal vegetable crop widely cultivated in Northeast China. Powdery mildew (PM) disease occurs during field and greenhouse cultivation, resulting in production losses and quality deterioration. The pathogen in A. selengensis was Golovinomyces artemisiae identified using optical microscopic and scanning electron microscopic observations, morphological identification, and molecular biological analyses. Parameters of chlorophyll fluorescence (ChlF) and antioxidant system responses as well as callose and lignin contents in A. selengensis were analyzed with inoculating G. artemisiae. Obvious of PM-infected leaves were confirmed with significantly lower values in electron transport rate (ETR), non-photochemical quenching (NPQ), photochemical quenching (qP), and actual photochemical efficiency [Y(II)], but higher values in non-adjusting energy dissipation yield [Y(NO)], supposed that maximal photosystem II quantum yield (Fv/Fm) value and images could be used to monitor PM degree on infectedA. selengensis. In addition, malondialdehyde (MDA), superoxide anion (O2), callose, lignin contents, and peroxidase (POD) activity increased, while superoxide dismutase (SOD) activity, catalase (CAT) activity, and ascorbic acid (AsA) content decreased significantly in infected leaves compared to mock-inoculated leaves, indicated that lignin and protective enzymes are the key indicators for detecting PM resistant in A. selengensis. These results suggest that PM caused by G. artemisiae disrupted the photosynthetic capacity and induced imbalance of antioxidant system inA. selengensis. The findings were of great significance for designing a feasible approach to effectively prevent and control the PM disease in A. selengensis as well as in other vegetable crops.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3