Towards deep learning based smart farming for intelligent weeds management in crops

Author:

Saqib Muhammad Ali,Aqib Muhammad,Tahir Muhammad Naveed,Hafeez Yaser

Abstract

IntroductionDeep learning (DL) is a core constituent for building an object detection system and provides a variety of algorithms to be used in a variety of applications. In agriculture, weed management is one of the major concerns, weed detection systems could be of great help to improve production. In this work, we have proposed a DL-based weed detection model that can efficiently be used for effective weed management in crops.MethodsOur proposed model uses Convolutional Neural Network based object detection system You Only Look Once (YOLO) for training and prediction. The collected dataset contains RGB images of four different weed species named Grass, Creeping Thistle, Bindweed, and California poppy. This dataset is manipulated by applying LAB (Lightness A and B) and HSV (Hue, Saturation, Value) image transformation techniques and then trained on four YOLO models (v3, v3-tiny, v4, v4-tiny).Results and discussionThe effects of image transformation are analyzed, and it is deduced that the model performance is not much affected by this transformation. Inferencing results obtained by making a comparison of correctly predicted weeds are quite promising, among all models implemented in this work, the YOLOv4 model has achieved the highest accuracy. It has correctly predicted 98.88% weeds with an average loss of 1.8 and 73.1% mean average precision value.Future workIn the future, we plan to integrate this model in a variable rate sprayer for precise weed management in real time.

Funder

Higher Education Commision, Pakistan

Publisher

Frontiers Media SA

Subject

Plant Science

Reference52 articles.

1. A deep learning model to predict vehicles occupancy on freeways for traffic management;Aqib;Int. J. Comput. Sci. Netw. Secu,2018

2. Rapid transit systems: Smarter urban planning using big data, in-memory computing, deep learning, and gpus;Aqib;Sustainability,2019

3. Smarter traffic prediction using big data, in-memory computing, deep learning and gpus;Aqib;Sensors,2019

4. Deep learning and medical diagnosis: A review of literature;Bakator;Multimodal Technol. Interaction,2018

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3