Nondestructive detection of Pleurotus geesteranus strain degradation based on micro-hyperspectral imaging and machine learning

Author:

Wei Xuan,Liu Shiyang,Xie Chuangyuan,Fang Wei,Deng Chanjuan,Wen Zhiqiang,Ye Dapeng,Jie Dengfei

Abstract

In the production of edible fungi, the use of degraded strains in cultivation incurs significant economic losses. Based on micro-hyperspectral imaging and machine learning, this study proposes an early, nondestructive method for detecting different degradation degrees of Pleurotus geesteranus strains. In this study, an undegraded strain and three different degradation-level strains were used. During the mycelium growth, 600 micro-hyperspectral images were obtained. Based on the average transmittance spectra of the region of interest (ROI) in the range of 400-1000 nm and images at feature bands, feature spectra and images were extracted using the successive projections algorithm (SPA) and the deep residual network (ResNet50), respectively. Different feature input combinations were utilized to establish support vector machine (SVM) classification models. Based on the results, the spectra-input-based model performed better than the image-input-based model, and feature extraction improved the classification results for both models. The feature-fusion-based SPA+ResNet50-SVM model was the best; the accuracy rate of the test set was up to 90.8%, which was better than the accuracy rates of SPA-SVM (83.3%) and ResNet50-SVM (80.8%). This study proposes a nondestructive method to detect the degradation of Pleurotus geesteranus strains, which could further inspire new methods for the phenotypic identification of edible fungi.

Funder

Natural Science Foundation of Fujian Province

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3