Hydrometeorological conditions drive long-term changes in the spatial distribution of Potamogeton crispus in a subtropical lake

Author:

Yang Ke,Yin Yi,Xu Ying,Wang Shaobo,Gao Mingyuan,Peng Kai,Luo Juhua,Gao Junfeng,Cai Yongjiu

Abstract

Globally, anthropogenic disturbance and climate change caused a rapid decline of submerged macrophytes in lake ecosystems. Potamogeton crispus (P. crispus), a species that germinates in winter, explosively expanded throughout many Chinese lakes, yet the underlying mechanism remained unclear. Here, this study examined the long-term changes in the distribution patterns of P. crispus in Lake Gaoyou by combining remote sensing images and hydrometeorological data from 1984 to 2022 and water quality data from 2009 to 2022. It aims to unravel the relationships between the distribution patterns of P. crispus and hydrometeorological and water quality factors. The results showed that the area of P. crispus in Lake Gaoyou showed a slight increase from 1984 to 2009, a marked increase from 2010 to 2019, followed by a decline after 2020. Spatially, P. crispus was primarily distributed in the western and northern parts of Lake Gaoyou, with less distribution in the central and southeastern parts of the lake. Wind speed (WS), temperature (Temp), water level (WL), ammonia nitrogen (NH3-N), and Secchi depth (SD) were identified as the key factors regulating the variation in the P. crispus area in Lake Gaoyou. We found that the P. crispus area showed an increasing trend with increasing Temp, WL, and SD and decreasing WS and NH3-N. The influence of environmental factors on the area of P. crispus in Lake Gaoyou varied among seasons. The results indicated that hydrometeorology (WS, Temp, and WL) may override water quality (NH3-N and SD) in driving the succession of P. crispus distribution. The findings of this study offer valuable insights into the recent widespread expansion of P. crispus in shallow lakes across Eastern China.

Funder

National Natural Science Foundation of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3