Nitrogen reduction combined with ETc irrigation maintained summer maize yield and increased water and nitrogen use efficiency

Author:

Gu Limin,Mu Xinyuan,Qi Jianshuang,Tang Baojun,Zhen Wenchao,Xia Laikun

Abstract

IntroductionHigh rainfall and excessive urea application are counterproductive to summer maize growth requirements and lower grain yield and water/nitrogen (N) use efficiency. The objective of this study was to determine whether ETc irrigation based on summer maize demand and reduced nitrogen rate in the Huang Huai Hai Plain increased water and nitrogen use efficiency without sacrificing yield.MethodsTo achieve this, we conducted an experiment with four irrigation levels [ambient rainfall (I0) and 50% (I1), 75% (I2), and 100% (I3) of actual crop evapotranspiration (ETc)] and four nitrogen rates [no nitrogen fertilizer (N0), recommended nitrogen rate of urea (NU), recommended nitrogen rate of blending controlled-release urea with conventional urea fertilizer (BCRF) (NC), and reduced nitrogen rate of BCRF (NR)] in 2016–2018.ResultsThe results show that reduced irrigation and nitrogen rate reduced Fv/Fm, 13C-photosynthate, and nitrogen accumulation both in the kernel and plant. I3NC and I3NU accumulated higher 13C-photosynthate, nitrogen, and dry matter. However, 13C-photosynthate and nitrogen distribution to the kernel was decreased from I2 to I3 and was higher in BCRF than in urea. I2NC and I2NR promoted their distribution to the kernel, resulting in a higher harvest index. Compared with I3NU, I2NR increased root length density by 32.8% on average, maintaining considerable leaf Fv/Fm and obtaining similar kernel number and kernel weight. The higher root length density of I2NR of 40–60 cm promoted 13C-photosynthate and nitrogen distribution to the kernel and increased the harvest index. As a result, the water use efficiency (WUE) and nitrogen agronomic use efficiency (NAUE) in I2NR increased by 20.5%–31.9% and 11.0%–38.0% than that in I3NU, respectively.DiscussionTherefore, 75%ETc deficit irrigation and BCRF fertilizer with 80% nitrogen rate improved root length density, maintained leaf Fv/Fm in the milking stage, promoted 13C-photosynthate, and distributed nitrogen to the kernel, ultimately providing a higher WUE and NAUE without significantly reducing grain yield.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3