Oligochitosan fortifies antioxidative and photosynthetic metabolism and enhances secondary metabolite accumulation in arsenic-stressed peppermint

Author:

Ahmad Bilal,Dar Tariq Ahmad,Khan M. Masroor A.,Ahmad Ajaz,Rinklebe Jörg,Chen Yinglong,Ahmad Parvaiz

Abstract

The current study was designed to investigate whether application of irradiated chitosan (ICn), a recently established plant growth promoter, can prove effective in alleviating arsenic (As) stress in peppermint, a medicinally important plant. This study investigated how foliar application of ICn alleviated As toxicity in peppermint (Mentha piperita L.). Peppermint plants were treated with ICn (80 mg L−1) alone or in combination with As (10, 20, or 40 mg kg−1 of soil, as Na2HAsO4·7H2O) 40 days after transplantation (DAT), and effects on the growth, photosynthesis, and antioxidants were assessed at 150 DAT as stress severely decreases plant growth, affects photosynthesis, and alters enzymatic (ascorbate peroxidase, superoxide dismutase) and non-enzymatic (glutathione) antioxidants. When applied at 40 mg kg−1, ICn significantly decreased the content of essential oil (EO) and total phenols in peppermint by 13.8 and 16.0%, respectively, and decreased phenylalanine ammonia lyase (PAL) and deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) activities by 12.8 and 14.6%, respectively. Application of ICn mitigated the disadvantageous effects caused by As toxicity in peppermint by enhancing activities of antioxidative enzymes and photosynthesis and increased accretion of secondary metabolism products (EOs and phenols). An enhancement of total phenols (increased by 17.3%) and EOs (36.4%) is endorsed to ICn-stimulated enhancement in the activities of PAL and DXR (65.9 and 28.9%, respectively) in comparison to the control. To conclude, this study demonstrated that foliar application of ICn (80 mgL−1) effectively promoted the growth and physiology of peppermint and eliminated As-induced toxicity to achieve high production of EO-containing crops grown in metal-contaminated soils.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3