Development of a sensor-based site-specific N topdressing algorithm for a typical leafy vegetable

Author:

Ji Rongting,Shi Weiming,Wang Yuan,Zhang Hailin,Min Ju

Abstract

Precise and site-specific nitrogen (N) fertilizer management of vegetables is essential to improve the N use efficiency considering temporal and spatial fertility variations among fields, while the current N fertilizer recommendation methods are proved to be time- and labor-consuming. To establish a site-specific N topdressing algorithm for bok choy (Brassica rapa subsp. chinensis), using a hand-held GreenSeeker canopy sensor, we conducted field experiments in the years 2014, 2017, and 2020. Two planting densities, viz, high (123,000 plants ha–1) in Year I and low (57,000 plants ha–1) in Year II, whereas, combined densities in Year III were used to evaluate the effect of five N application rates (0, 45, 109, 157, and 205 kg N ha–1). A robust relationship was observed between the sensor-based normalized difference vegetation index (NDVI), the ratio vegetation index (RVI), and the yield potential without topdressing (YP0) at the rosette stage, and 81–84% of the variability at high density and 76–79% of that at low density could be explained. By combining the densities and years, the R2 value increased to 0.90. Additionally, the rosette stage was identified as the earliest stage for reliably predicting the response index at harvest (RIHarvest), based on the response index derived from NDVI (RINDVI) and RVI (RIRVI), with R2 values of 0.59–0.67 at high density and 0.53–0.65 at low density. When using the combined results, the RIRVI performed 6.12% better than the RINDVI, and 52% of the variability could be explained. This study demonstrates the good potential of establishing a sensor-based N topdressing algorithm for bok choy, which could contribute to the sustainable development of vegetable production.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3