Anatomical Characteristics and Variation Mechanisms on the Thick-Walled and Dwarfed Culm of Shidu Bamboo (Phyllostachys nidularia f. farcta)

Author:

Wang Yujun,Qiao Guirong,Xu Jing,Jin Kangming,Fan Minyuan,Ding Yulong,Wei Qiang,Zhuo Renying

Abstract

Stable culm variants are valuable and important material for the study of culm development in bamboo plants. However, to date, there are few reports on the mechanism of variation of these bamboo variants. Phyllostachys nidularia f. farcta (Shidu bamboo) is a bamboo variant with stable phenotypes such as a dwarf culm with a thickened wall. In this study, we systematically investigated the cytological characteristics and underlying mechanism of morphological variation in culms of this variant using anatomical, mathematical statistical, physiological, and genomic methods. The anatomical observation and statistical results showed that the lateral increase of ground tissue in the inner layer of culm wall and the enlargement of vascular bundles are the anatomical essence of the wall thickening of Shidu bamboo; the limited elongation of fiber cells and the decrease in the number of parenchyma cells longitudinally are probably the main causes of the shortening of its internodes. A number of genes involved in the gibberellin synthesis pathway and in the synthesis of cell wall components are differentially expressed between the variant and its prototype, Ph. nidularia, and may play an important role in determining the phenotype of internode shortening in Shidu bamboo. The decrease in gibberellin content and the content of the major chemical components of the cell wall of Shidu bamboo confirmed the results of the above transcriptome. In addition, the variation in culm morphology in Shidu bamboo had little effect on the volume of the culm wall of individual internodes, suggesting that the decrease in the total number of internodes and the decrease in dry matter content (lignin, cellulose, etc.) may be the main factor for the sharp decline in culm biomass of Shidu bamboo.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3