Investigating a Selection of Methods for the Prediction of Total Soluble Solids Among Wine Grape Quality Characteristics Using Normalized Difference Vegetation Index Data From Proximal and Remote Sensing

Author:

Kasimati Aikaterini,Espejo-Garcia Borja,Vali Eleanna,Malounas Ioannis,Fountas Spyros

Abstract

The most common method for determining wine grape quality characteristics is to perform sample-based laboratory analysis, which can be time-consuming and expensive. In this article, we investigate an alternative approach to predict wine grape quality characteristics by combining machine learning techniques and normalized difference vegetation index (NDVI) data collected at different growth stages with non-destructive methods, such as proximal and remote sensing, that are currently used in precision viticulture (PV). The study involved several sets of high-resolution multispectral data derived from four sources, including two vehicle-mounted crop reflectance sensors, unmanned aerial vehicle (UAV)-acquired data, and Sentinel-2 (S2) archived imagery to estimate grapevine canopy properties at different growth stages. Several data pre-processing techniques were employed, including data quality assessment, data interpolation onto a 100-cell grid (10 × 20 m), and data normalization. By calculating Pearson’s correlation matrix between all variables, initial descriptive statistical analysis was carried out to investigate the relationships between NDVI data from all proximal and remote sensors and the grape quality characteristics in all growth stages. The transformed dataset was then ready and applied to statistical and machine learning algorithms, firstly trained on the data distribution available and then validated and tested, using linear and nonlinear regression models, including ordinary least square (OLS), Theil–Sen, and the Huber regression models and Ensemble Methods based on Decision Trees. Proximal sensors performed better in wine grapes quality parameters prediction in the early season, while remote sensors during later growth stages. The strongest correlations with the sugar content were observed for NDVI data collected with the UAV, Spectrosense+GPS (SS), and the CropCircle (CC), during Berries pea-sized and the Veraison stage, mid-late season with full canopy growth, for both years. UAV and SS data proved to be more accurate in predicting the sugars out of all wine grape quality characteristics, especially during a mid-late season with full canopy growth, in Berries pea-sized and the Veraison growth stages. The best-fitted regressions presented a maximum coefficient of determination (R2) of 0.61.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3