Contrasting water-use patterns of Chinese fir among different plantation types in a subtropical region of China

Author:

Zhang Ying,Xu Qing,Zhang Beibei,Gao Deqiang,Wang Ting,Xu Wenbin,Ren Ranran,Wang Silong

Abstract

Plantation cultivation plays an important role in improving terrestrial ecosystem functions and services. Understanding the water-use patterns of major afforestation species is vital for formulating ecological restoration strategies and predicting the response of plantation to climate change. However, the impacts and drivers of forest types on water-use patterns of key tree species are poorly understood. Here, the combined methods of dual stable isotope of δD and δ18O and Bayesian mixed framework (MixSIAR) were employed to investigate the water-use patterns of Cunninghamia lanceolata (Chinese fir) in a monoculture, mixed forest with Cinnamomum camphora, and mixed forest with Alnus cremastogyne under different rainfall events in subtropical China. Furthermore, the relative contribution of different soil and plant factors to the water-use patterns of Chinese fir was quantified using a random forest model. Our results showed that Chinese fir in the mixed forests (with C. camphora or with A. cremastogyne) utilized less water from shallow soil compared to that in a monoculture but significantly improved the proportion of water absorbed from deep soil with the increase of 55.57%–64.90% and 68.99%–108.83% following moderate and heavy rainfall events, respectively. The most important factors contributing to the differences in water-use patterns of Chinese fir among monoculture and mixed forests were tree attributes (i.e., leaf biomass, eco-physiological regulation, and fine root biomass). These findings reveal that Chinese fir in mixed forests could optimize water-use patterns by adjusting plant properties for interspecific niche complementarity, improving the utilization of deep soil water. Overall, this study suggests that mixed-species plantations could improve water-use efficiency and reduce the sensitivity of tree species to precipitation change, indicating they are better able to cope with expected climate variability.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3