Re-shaping pruning improves the dynamic response of centuries-old olive trees to branch-shaker vibrations application

Author:

Camposeo Salvatore,Vicino Francesco,Vivaldi Gaetano Alessandro,Pascuzzi Simone

Abstract

IntroductionThe Mediterranean basin is home to centuries-old large olive trees; high-vigor cultivars are widespread, with training forms poorly adapted to mechanical harvesting by trunk/branch shakers. The significant quantity of leaves, the considerable tree height, and the presence of multiple dichotomous hanging branches reduce the transmission of vibrations applied by the branch-shaker machines. Thus, re-shaping pruning may improve the performance of this modern mechanical harvesting method by focusing on removing both the hanging branches and those forming dichotomies. The goal of this study was to evaluate the dynamic responses of large-sized olive trees to pruning (or not) through various field tests under different excitation forces. We hypothesized that more rational pruning could significantly increase vibration transmissions.MethodsTo assess the transmission of vibrations, tests were conducted before and after the pruning on representative trees. Tri-axial accelerometers packed in a small titanium housing were used. Trees were assessed before and after the re-shaping pruning. This study reports the first data about the dynamic behavior of centuries-old tree skeletons, in the context of very large-sized olive trees, while taking into account the effects of two different vibrations application modes: a realistic one represented by the system vibration head-tree, originated when the gripper of a shaking machine wrapped and fastened the main branch of the olive trees, and a more speculative one, represented by a single impulse of a short-duration force originated by a hammer.ResultsAfter pruning, spectral density increased 10 fold in the tertiary branches of pruned trees (ranging 1.0–10 m s−2) compared to that of not-pruned ones (ranging 0.1–1.0 m s−2) at frequency >50 Hz under vibration excitation. Moreover, vibrational decay times (120–150 ms) and amplitude (>10−1 m s−2) were higher under single-impulse excitation.DiscussionA more rational pruning applied to ancient large-sized olive trees significantly increased the vibration transmission under both impulse and vibratory excitation forces, without affected their typical “look”. Moreover, these insights are helpful in turn in achieving maximum fruit-removal efficiency. These insights could be applied to various horticultural conditions which would improve the economic sustainability of monumental olive trees, a key portion of the Mediterranean landscape and cultural heritage.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference43 articles.

1. Harvesting system sustainability in Mediterranean olive cultivation: other principal cultivar;Bernardi;Sci. Total Environ.,2021

2. Oliveculture and ancient olive orchards in the EU-Mediterranean are;Calabrese,2012

3. Intensification in olive growing reduces global warming potential under both integrated and organic farming;Camposeo;Sustainability,2022

4. Measuring the stresses transmitted during mechanical grape harvesting;Caprara;Biosyst. Eng.,2011

5. Olive fruit detachment force against pulling and torsional stress;Castillo-Ruiz;Spanish J. Agric. Res.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3