Seed endophytic bacterial profiling from wheat varieties of contrasting heat sensitivity

Author:

Aswini Krishnan,Suman Archna,Sharma Pushpendra,Singh Pradeep Kumar,Gond Shrikant,Pathak Devashish

Abstract

Wheat yield can be limited by many biotic and abiotic factors. Heat stress at the grain filling stage is a factor that reduces wheat production tremendously. The potential role of endophytic microorganisms in mitigating plant stress through various biomolecules like enzymes and growth hormones and also by improving plant nutrition has led to a more in-depth exploration of the plant microbiome for such functions. Hence, we devised this study to investigate the abundance and diversity of wheat seed endophytic bacteria (WSEB) from heatS (heat susceptible, GW322) and heatT (heat tolerant, HD3298 and HD3271) varieties by culturable and unculturable approaches. The results evidenced that the culturable diversity was higher in the heatS variety than in the heatT variety and Bacillus was found to be dominant among the 10 different bacterial genera identified. Though the WSEB population was higher in the heatS variety, a greater number of isolates from the heatT variety showed tolerance to higher temperatures (up to 55°C) along with PGP activities such as indole acetic acid (IAA) production and nutrient acquisition. Additionally, the metagenomic analysis of seed microbiota unveiled higher bacterial diversity, with a predominance of the phyla Proteobacteria covering >50% of OTUs, followed by Firmicutes and Actinobacteria. There were considerable variations in the abundance and diversity between heat sensitivity contrasting varieties, where notably more thermophilic bacterial OTUs were observed in the heatT samples, which could be attributed to conferring tolerance against heat stress. Furthermore, exploring the functional characteristics of culturable and unculturable microbiomes would provide more comprehensive information on improving plant growth and productivity for sustainable agriculture.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3