The combined effect of fire and nitrogen addition on biodiversity and herbaceous aboveground productivity in a coastal shrubland

Author:

Qi Luyu,Song Yixin,Zhang Puyi,Sun Wenlong,Wang Wei,Yi Shijie,Li Jing,Liu Haifang,Bi Zhenggang,Du Ning,Guo Weihua

Abstract

IntroductionFire and nitrogen (N) deposition each impact biodiversity and ecosystem productivity. However, the effect of N deposition on ecosystem recovery after fire is still far from understood, especially in coastal wetlands.MethodsWe selected a typical coastal shrubland to simulate three N deposition levels (0, 10, and 20 g N m−2 year−1) under two different burned conditions (unburned and burned) in the Yellow River Delta of North China. Soil properties, soil microbial biodiversity, shrub growth parameters, herbaceous biodiversity, and aboveground productivity were determined after experimental treatments for 1 year.ResultsWe found that fire had a stronger influence on the ecosystem than N addition. One year after the fire, shrub growth had significantly decreased, while soil pH, soil electrical conductivity, herbaceous biodiversity, soil microbial biodiversity, and herbaceous aboveground productivity significantly increased. Conversely, a single year of N addition only slightly increased herbaceous aboveground productivity. The combined effect of fire and N addition was only significant for fungus biodiversity and otherwise had minimal influence. Interestingly, we found that herbaceous aboveground productivity was positively associated with fungal community diversity under unburned conditions but not in burned shrublands. Fire showed a great impact on soil parameters and biodiversity in the coastal wetland ecosystem even after a full year of recovery.DiscussionFire may also diminish the influence of several belowground factors on herbaceous aboveground productivity, which ultimately reduces recovery and stability. Appropriate N addition may be an effective way to improve the ecosystem productivity in a wetland dominated by shrub species.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3