Study on the metabolic process of phthalic acid driven proliferation of Rhizoctonia solani

Author:

Ju Jidong,Zhou Bingqian,Yang Guohong,Fu Xinyu,Wang Xiao,Guo Lanping,Liu Wei

Abstract

IntroductionContinuous cropping obstacle seriously affects the quality and yield of Salvia miltiorrhiza, and the synergistic effect of root exudates and rhizosphere pathogenic microorganisms may be an important cause of continuous cropping obstacle. This study aimed to explore the effects of representative organic acids on the growth and metabolism of specific microorganisms in the S. miltiorrhiza rhizosphere soil under continuous cropping, and clarify its mechanism.MethodsThe effect of phthalic acid (PA) on the growth and metabolism of Rhizoctonia solani was evaluated by mycelial growth inhibition method. Ultra-high performance liquid chromatography and tandem mass spectrometry were used to identify the differential metabolites of R. solani induced by exogenous PA.ResultsPA exerted a concentration-dependent effect on mycelial growth, biomass, intracellular polysaccharides con-tent, and total protein content in R. solani. A total of 1773 metabolites and 1040 differential metabolites were identified in the blank medium (CK), Fungi (CK + fungi), and PA-Fungi (CK + fungi + acid) groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the differential metabolites were mainly involved in the sugar, lipid, and protein metabolic pathways related to stable membrane structure and cell growth.DiscussionThe proliferation and metabolism network of R. solani induced by PA was proposed, and the enhancement of sugar, lipid, and amino acid metabolism was presumed to be related to the active resistance of cells to organic acid stress. These results offer new in-sights into the effects of PA metabolism on promoting R. solani proliferation, and provide theoretical support for further optimizing the rhizosphere microecological environment of Salvia miltiorrhiza continuous cropping soil and reducing continuous cropping obstacle.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3