The Stem Sap Flow and Water Sources for Tamarix ramosissima in an Artificial Shelterbelt With a Deep Groundwater Table in Northwest China

Author:

Liu Feiyao,You Quangang,Xue Xian,Peng Fei,Huang Cuihua,Ma Shaoxiu,Pan Jing,Shi Yaofang,Chen Xiaojie

Abstract

The shelterbelt forest between oases and the desert plays a vital role in preventing aeolian disasters and desertification in arid regions of northwest China. Tamarix ramosissima (T. ramosissima), a typical perennial and native xerophyte shrub in Northwest China, grows naturally and is widely used in building artificial shelterbelt forests. The balance between water consumption and the availability of water determines the survival and growth of T. ramosissima. How T. ramosissima copes with extremely low rainfall and a deep groundwater table remains unknown. To answer this, the transpiration and the water sources of T. ramosissima were investigated by the heat balance and oxygen isotopic analysis method, respectively. Our results show that the daily T. ramosissima stem sap flow (SSF) was positively correlated with air temperature (Ta), photosynthetically active radiation (PAR), and the vapor pressure deficit (VPD). We found no significant relationship between the daily SSF and soil moisture in shallow (0–40 cm) and middle (40–160 cm) soil layers. Oxygen isotope results showed that T. ramosissima mainly sources (>90%) water from deep soil moisture (160–400 cm) and groundwater (910 cm). Diurnally, T. ramosissima SSF showed a hysteresis response to variations in PAR, Ta, and VPD, which suggests that transpiration suffers increasingly from water stress with increasing PAR, Ta, and VPD. Our results indicate that PAR, Ta, and VPD are the dominant factors that control T. ramosissima SSF, not precipitation and shallow soil moisture. Deep soil water and groundwater are the primary sources for T. ramosissima in this extremely water-limited environment. These results provide information that is essential for proper water resource management during vegetation restoration and ecological reafforestation in water-limited regions.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Plant Science

Reference97 articles.

1. Crop Evapotranspiration: guidelines for Computing Crop Water Requirements, FAO Irrigation and Drainage.;Allen;J. Hydrol.,1998

2. Variation in water uptake dynamics among contrasting agricultural and native plant communities in the Midwestern U.S.;Asbjornsen;Agric. Ecosyst. Environ.,2007

3. Measurement of mass-flow of water in the stems of herbaceous plants.;Baker;Plant Cell Environ.,1987

4. Phenological events and their environmental triggers in mojave-desert ecosystems.;Beatley;Ecology,1974

5. Environmental controls on sap flow in a northern hardwood forest.;Bovard;Tree Physiol.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3