Author:
Anglin Noelle L.,Chavez Oswaldo,Soto - Torres Julian,Gomez Rene,Panta Ana,Vollmer Rainer,Durand Marisol,Meza Charo,Azevedo Vania,Manrique - Carpintero Norma C.,Kauth Philip,Coombs Joesph J.,Douches David S.,Ellis David
Abstract
A total of 3,860 accessions from the global in trust clonal potato germplasm collection w3ere genotyped with the Illumina Infinium SolCAP V2 12K potato SNP array to evaluate genetic diversity and population structure within the potato germplasm collection. Diploid, triploid, tetraploid, and pentaploid accessions were included representing the cultivated potato taxa. Heterozygosity ranged from 9.7% to 66.6% increasing with ploidy level with an average heterozygosity of 33.5%. Identity, relatedness, and ancestry were evaluated using hierarchal clustering and model-based Bayesian admixture analyses. Errors in genetic identity were revealed in a side-by-side comparison of in vitro clonal material with the original mother plants revealing mistakes putatively occurring during decades of processing and handling. A phylogeny was constructed to evaluate inter- and intraspecific relationships which together with a STRUCTURE analysis supported both commonly used treatments of potato taxonomy. Accessions generally clustered based on taxonomic and ploidy classifications with some exceptions but did not consistently cluster by geographic origin. STRUCTURE analysis identified putative hybrids and suggested six genetic clusters in the cultivated potato collection with extensive gene flow occurring among the potato populations, implying most populations readily shared alleles and that introgression is common in potato. Solanum tuberosum subsp. andigena (ADG) and S. curtilobum (CUR) displayed significant admixture. ADG likely has extensive admixture due to its broad geographic distribution. Solanum phureja (PHU), Solanum chaucha (CHA)/Solanum stenotomum subsp. stenotomum (STN), and Solanum tuberosum subsp. tuberosum (TBR) populations had less admixture from an accession/population perspective relative to the species evaluated. A core and mini core subset from the genebank material was also constructed. SNP genotyping was also carried out on 745 accessions from the Seed Savers potato collection which confirmed no genetic duplication between the two potato collections, suggesting that the collections hold very different genetic resources of potato. The Infinium SNP Potato Array is a powerful tool that can provide diversity assessments, fingerprint genebank accessions for quality management programs, use in research and breeding, and provide insights into the complex genetic structure and hybrid origin of the diversity present in potato genetic resource collections.