Overexpression of the HcPT1.1 transporter in Hebeloma cylindrosporum alters the phosphorus accumulation of Pinus pinaster and the distribution of HcPT2 in ectomycorrhizae

Author:

Amenc Laurie,Becquer Adeline,Trives-Segura Carlos,Zimmermann Sabine D.,Garcia Kevin,Plassard Claude

Abstract

Ectomycorrhizal (ECM) fungi are associated with the roots of woody plants in temperate and boreal forests and help them to acquire water and nutrients, particularly phosphorus (P). However, the molecular mechanisms responsible for the transfer of P from the fungus to the plant in ectomycorrhizae are still poorly understood. In the model association between the ECM fungus Hebeloma cylindrosporum and its host plant Pinus pinaster, we have shown that the fungus, which possesses three H+:Pi symporters (HcPT1.1, HcPT1.2 and HcPT2), expresses mainly HcPT1.1 and HcPT2 in the extraradical and intraradical hyphae of ectomycorrhizae to transport P from the soil to colonized roots. The present study focuses on the role of the HcPT1.1 protein in plant P nutrition, in function of P availability. We artificially overexpressed this P transporter by fungal Agrotransformation and investigated the effect of the different lines, wild-type and transformed ones, on plant P accumulation, the distribution of HcPT1.1 and HcPT2 proteins in ectomycorrhizae by immunolocalization, and 32P efflux in an experimental system mimicking intraradical hyphae. Surprisingly, we showed that plants interacting with transgenic fungal lines overexpressing HcPT1.1 did not accumulate more P in their shoots than plants colonized with the control ones. Although the overexpression of HcPT1.1 did not affect the expression levels of the other two P transporters in pure cultures, it induced a strong reduction in HcPT2 proteins in ectomycorrhizae, particularly in intraradical hyphae, but still improved the P status of host plant shoots compared with non-mycorrhizal plants. Finally, 32P efflux from hyphae was higher in lines overexpressing HcPT1.1 than in the control ones. These results suggest that a tight regulation and/or a functional redundancy between the H+:Pi symporters of H. cylindrosporum might exist to ensure a sustainable P delivery to P. pinaster roots.

Funder

Agence Nationale de la Recherche

Food and Nutrition Service

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3