Responses of sap flow density of two shrub species to rainfall classes on the semiarid Loess Plateau of China

Author:

Fang Weiwei,Lu Nan,Liu Jianbo,Li Ruiping,Wang Yuxiao

Abstract

IntroductionRainfall events can determine a cascade of plant physiological and ecological processes, and there is considerable interest in the way that rainfall modifies plant water flux dynamics.MethodsThe sap flow density (SF) of the planted species of Vitex negundo and Hippophae rhamnoides, on the Loess Plateau of China was monitored using the heat balance method from 2015 to 2017.Results and discussionThe results showed that SF responded differently to rainfall classes because of the changing meteorological and soil water content (SWC) conditions. For class 1: 0.2–2 mm, SF increased by 14.36–42.93% for the two species, which were mainly attributable to the effect of solar radiation and vapor pressure deficit after rainfall. For class 2: 2–10 mm, SF remained nearly stable for V. negundo and decreased for H. rhamnoides because of the relative humidity’s effect. For class 3: > 10 mm, SF increased significantly because of increased SWC and the increasing response to solar radiation. The increased percentage of SF was relatively higher for V. negundo when rainfall was less than 20 mm, while the value was higher for H. rhamnoides when rainfall was greater than 10 mm. Further, V. negundo’s water potential increased at the soil–root interface (ψ0) and ψL, indicating that the plant, which has shallower roots and a coarser of leaf and bark texture, considered as anisohydric species and used precipitation-derived upper soil water to survive. The relatively consistent ψL and ψ0 for H. rhamnoides, which has deep roots and leathery leaves, indicated that this species was considered as isohydric species and insensitive to the slight change in the soil water status. The differed response patter and water use strategies between the two species showed that species as V. negundo are more susceptible to frequent, but small rainfall events, while larger, but less frequent rainfall events benefit such species as H. rhamnoides. This study quantified the effect of environmental factors for SF variation. The results could help formulate a selection process to determine which species are more suitable for sustainable management in the afforestation activities under the context of more frequent and intense rainfall events.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3