Uptake and translocation mechanisms of different forms of organic selenium in rice (Oryza sativa L.)

Author:

Wang Qi,Kong Lingxuan,Huang Qingqing,Li Huafen,Wan Yanan

Abstract

Selenium (Se) is an essential trace element for human and animal health, and toward an understanding of the uptake and translocation of Se in plants is important from the perspective of Se biofortification. In this study, we conducted hydroponic experiments to investigate the mechanisms of organic Se [selenomethionine (SeMet) and selenomethionine-oxide (SeOMet)] uptake, translocation, and the interactions between SeMet and SeOMet in rice. We also investigated differences in the dynamics of organic and inorganic Se uptake by rice roots. Concentration-dependent kinetic results revealed that SeMet uptake during a 1 h exposure was 3.19–16.0 times higher than that of three other Se chemical forms, with uptake capacity (Vmax) values ordered as follows: SeMet>SeOMet>selenite>selenate. Furthermore, time-dependent kinetic analysis revealed that SeMet uptake by roots and content in shoots were initially clearly higher than those of SeOMet, although the differences gradually diminished with prolonged exposure time; while no significant difference was found in the transfer factor of Se from rice roots to shoots between SeMet and SeOMet. Root uptake of SeOMet was significantly inhibited by carbonyl cyanide 3-chlorophenylhydrazone (CCCP) (30.4%), AgNO3 (41.8%), and tetraethylammonium chloride (TEACl) (45.6%), indicating that SeOMet uptake is a metabolically active process, and that it could be mediated via aquaporins and K+ channels. Contrarily, SeMet uptake was insensitive to CCCP, although markedly inhibited by AgNO3 (93.1%), indicating that rice absorbs SeMet primarily via aquaporins. Furthermore, Se uptake and translocation in rice treated simultaneously with both SeMet and SeOMet were considerably lower than those in rice treated with SeMet treatment alone and notably lower than the theoretical quantity, indicating interactions between SeMet and SeOMet. Our findings provide important insights into the mechanisms underlying the uptake and translocation of organic Se within plants.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3