Morpho-physiological and biochemical characterization of African spider plant (Gynandropsis gynandra (L.) Briq.) genotypes under drought and non-drought conditions

Author:

Chatara Tinashe,Musvosvi Cousin,Houdegbe Aristide Carlos,Tesfay Samson Zeray,Sibiya Julia

Abstract

The African spider plant (Gynandropsis gynandra (L.) Briq.) is a nutrient-dense, climate-resilient indigenous vegetable with a C4 carbon fixation pathway. Understanding African spider plant drought tolerance mechanisms is essential for improving its performance in water-stressed areas. The objective of this study was to evaluate the stress tolerance potential of African spider plant accessions based on thirteen morphological, physiological, and biochemical traits under three different water treatment regimes. Eighteen accessions were evaluated over two growing seasons in the greenhouse using a split-split plot design with four replications and three water treatment-regimes namely optimum (100% field capacity), intermediate drought (50% field capacity) and, severe drought (30% field capacity). The results revealed that water regime had a significant effect (P< 0.01) on the accessions for the traits studied. A significant reduction across most of the studied traits was observed under drought conditions. However, proline content in all the accessions significantly rose under drought conditions. The principal component analysis revealed a considerable difference in the performance of the 18 African spider plant accessions under optimum and drought stress conditions. Several morphological and physiological parameters, including days to 50% flowering (r = 0.80), leaf length (r = 0.72), net photosynthesis (r = 0.76) and number of leaves per plant (r = 0.79), were positively associated with leaf yield under drought conditions. Cluster analysis categorized the 18 accessions and 13 measured parameters into 4 clusters, with cluster-1 exhibiting greater drought tolerance for most of the studied traits, and cluster-4 having the most drought-sensitive accessions. Among the accessions tested, accessions L3 and L5 demonstrated excellent drought tolerance and yield performance under both conditions. As a result, these accessions were selected as candidates for African spider plant drought tolerance breeding programs. These findings will serve as the foundation for future studies and will aid in improving food and nutrition security in the face of drought.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference99 articles.

1. Climate variability and change, impacts and adaptation strategies in dutsin-ma local government area of katsina state, Nigeria;Abaje;J. Geogr. Geology,2014

2. The diversity of cultivated African leafy vegetables in three communities in Western Kenya;Abukutsa-Onyango;Developing Afrcan leafy vegetables improved Nutr.,2005

3. Morphological traits as indicators of bitterness in traditional vegetables: the case of spider plant (Gynandropsis gynandra) in Kenya;Adeka;Asian J. Res. Bot.,2019

4. In vitro anthelmintic properties of Buchholzia coriaceae and Gynandropsis gynandra extracts;Ajaiyeoba;Pharm. Biol.,2001

5. The use of proline in screening for tolerance to drought and salinity in common bean (Phaseolus vulgaris L.) genotypes;Arteaga;Agron. 2020 Vol. 10 Page,2020

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3