Molecular changes in phenolic compounds in Euglena gracilis cells grown under metal stress

Author:

Bernard Eve,Guéguen Céline

Abstract

Metal presence in the aquatic ecosystem has increased and diversified over the last decades due to anthropogenic sources. These contaminants cause abiotic stress on living organisms that lead to the production of oxidizing molecules. Phenolic compounds are part of the defense mechanisms countering metal toxicity. In this study, the production of phenolic compounds by Euglena gracilis under three different metal stressors (i.e. cadmium, copper, or cobalt) at sub-lethal concentration was assessed using an untargeted metabolomic approach by mass spectrometry combined with neuronal network analysis (i.e. Cytoscape). The metal stress had a greater impact on molecular diversity than on the number of phenolic compounds. The prevalence of sulfur- and nitrogen-rich phenolic compounds were found in Cd- and Cu-amended cultures. Together these results confirm the impact of metallic stress on phenolic compounds production, which could be utilized to assess the metal contamination in natural waters.

Funder

Université de Sherbrooke

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3