Identification of a New Giant Emrbryo Allele, and Integrated Transcriptomics and Metabolomics Analysis of Giant Embryo Development in Rice

Author:

Hu Zejun,Xiong Qiangqiang,Wang Kai,Zhang Lixia,Yan Ying,Cao Liming,Niu Fuan,Zhu Jinyan,Hu Jinlong,Wu Shujun

Abstract

Rice embryos are rich in high-quality protein, lipid, vitamins and minerals, representing the most important nutritional part of brown rice. However, the molecular mechanism of rice embryo development is poorly understood. In this study, two rice cultivars with contrasting embryo size (the giant embryo cultivar Dapeimi and the normal embryo cultivar 187R) were used to explore excellent genes controlling embryo size, and the developed near-isogenic lines (NILs) (NIL-D, which has the giant embryo phenotype, and its matching line, NIL-X) were used to explore transcript and metabolic properties in the earlier maturation stage of giant embryo development under natural conditions. The map-based cloning results demonstrated that Dapeimi is a novel allelic mutant of the rice GIANT EMBRYO (GE) gene, and the functional mutation site is a single cytosine deletion in the exon1. A total of 285 differentially accumulated metabolites (DAMs) and 677 differentially expressed genes (DEGs) were identified between NIL-D and NIL-X. The analysis of DAMs indicated that plants lacking GE mainly promoted energy metabolism, amino acid metabolism, and lipid metabolism pathways in the rice embryo. Pearson correlation coefficient showed that 300 pairs of gene-metabolites were highly correlated. Among them, OsZS_02G0528500 and OsZS_12G0013700 were considered to be key genes regulating L-Aspartic acid and L-Tryptophan content during rice giant embryo development, which are promising to be good candidate genes to improve rice nutrition. By analyzing rice embryo development through a combination of strategies, this research contributes to a greater understanding of the molecular mechanism of rice embryo development, and provides a theoretical foundation for breeding high-nutrition varieties.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3