Performance evaluation of semi-supervised learning frameworks for multi-class weed detection

Author:

Li Jiajia,Chen Dong,Yin Xunyuan,Li Zhaojian

Abstract

Precision weed management (PWM), driven by machine vision and deep learning (DL) advancements, not only enhances agricultural product quality and optimizes crop yield but also provides a sustainable alternative to herbicide use. However, existing DL-based algorithms on weed detection are mainly developed based on supervised learning approaches, typically demanding large-scale datasets with manual-labeled annotations, which can be time-consuming and labor-intensive. As such, label-efficient learning methods, especially semi-supervised learning, have gained increased attention in the broader domain of computer vision and have demonstrated promising performance. These methods aim to utilize a small number of labeled data samples along with a great number of unlabeled samples to develop high-performing models comparable to the supervised learning counterpart trained on a large amount of labeled data samples. In this study, we assess the effectiveness of a semi-supervised learning framework for multi-class weed detection, employing two well-known object detection frameworks, namely FCOS (Fully Convolutional One-Stage Object Detection) and Faster-RCNN (Faster Region-based Convolutional Networks). Specifically, we evaluate a generalized student-teacher framework with an improved pseudo-label generation module to produce reliable pseudo-labels for the unlabeled data. To enhance generalization, an ensemble student network is employed to facilitate the training process. Experimental results show that the proposed approach is able to achieve approximately 76% and 96% detection accuracy as the supervised methods with only 10% of labeled data in CottonWeedDet3 and CottonWeedDet12, respectively. We offer access to the source code (https://github.com/JiajiaLi04/SemiWeeds), contributing a valuable resource for ongoing semi-supervised learning research in weed detection and beyond.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3