The Intron Retention Variant CsClpP3m Is Involved in Leaf Chlorosis in Some Tea Cultivars

Author:

Luo Xueyin,Zhang Mengxian,Xu Pei,Liu Guofeng,Wei Shu

Abstract

Tea products made from chlorotic or albino leaves are very popular for their unique flavor. Probing into the molecular mechanisms underlying the chlorotic leaf phenotype is required to better understand the formation of these tea cultivars and aid in future practical breeding. In this study, transcriptional alterations of multiple subunit genes of the caseinolytic protease complex (Clp) in the chlorotic tea cultivar ‘Yu-Jin-Xiang’ (YJX) were found. Cultivar YJX possessed the intron retention variant of ClpP3, named as CsClpP3m, in addition to the non-mutated ClpP3. The mutated variant results in a truncated protein containing only 166 amino acid residues and lacks the catalytic triad S182-H206-D255. Quantitative analysis of two CsClpP3 variants in different leaves with varying degrees of chlorosis in YJX and analyses of different chlorotic tea cultivars revealed that the transcript ratios of CsClpP3m over CsClpP3 were negatively correlated with leaf chlorophyll contents. The chlorotic young leaf phenotype was also generated in the transgenic tobacco by suppressing ClpP3 using the RNAi method; complementation with non-mutated CsClpP3 rescued the wild-type phenotype, whereas CsClpP3m failed to complement. Taken together, CsClpP3m is involved in leaf chlorosis in YJX and some other tea cultivars in a dose-dependent manner, likely resulting from the failure of Clp complex assembly due to the truncated sequence of CsClpP3m. Our data shed light on the mechanisms controlling leaf chlorosis in tea plants.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

Reference50 articles.

1. Recent advances in the study of Clp, FtsH and other proteases located in chloroplasts.;Adam;Curr. Opin. Plant Biol.,2006

2. Occurrence, biosynthesis and metabolism of theanine (γ-glutamyl- L-ethylamide) in plants: A comprehensive review.;Ashihara;Nat. Prod. Commun.,2015

3. Large-scale genetic analysis of chloroplast biogenesis in maize.;Belcher;Biochim. Biophys. Acta,2015

4. Tea-aroma, taste, color and bioactive constituents the aroma, taste, color and bioactive constituents of tea.;Chaturvedula;J. Med. Plants Res.,2011

5. Genome-wide association analyses reveal the importance of alternative splicing in diversifying gene function and regulating phenotypic variation in maize.;Chen;Plant Cell,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3