Molecular mechanism of Cu metal and drought stress resistance triggered by Porostereum spadiceum AGH786 in Solanum lycopersicum L.

Author:

Naz Falak,Hamayun Muhammad,Rauf Mamoona,Arif Muhammad,Afzal Khan Sumera,Ud-Din Jalal,Gul Humaira,Hussain Anwar,Iqbal Amjad,Kim Ho-Youn,Lee In-Jung

Abstract

Rapid industrialization and global warming have threatened the plants with multiple abiotic stresses, such as heavy metals and drought stress. For crop cultivation, the conventional approach of cleaning the soils by excavation is very costly and not feasible for large scale. Establishing toxin-free and drought-resistant crops is a major challenge in the environment under natural and anthropogenic pressure. In the past decades, copper contamination of agricultural land has become an emerging concern. For dry land reclamation, several new strategies, including bioremediation (phytoremediation and microbial remediation), have been used. Owing to the potential of Cu hyperaccumulators, the current project aims to enhance the drought tolerance and the phytoremediation potential of Solanum lycopersicum L. with the inoculation of copper and 12% polyethylene glycol (PEG)–induced drought stress–tolerant endophytic fungus Porostereum spadiceum AGH786 under the combined stress of copper heavy metal and PEG-induced drought stress. When S. lycopersicum L. was watered with individual stress of copper (Cu) concentration (400 ppm) in the form of copper sulfate (CuSO4.5H2O), 12% PEG–induced drought stress and the combined stress of both negatively affected the growth attributes, hormonal, metabolic, and antioxidant potential, compared with control. However, the multistress-resistant AGH786 endophytic fungus ameliorated the multistress tolerance response in S. lycopersicum L. by positively affecting the growth attributes, hormonal, metabolic, and antioxidant potential, and by restricting the root-to-shoot translocation of Cu and inducing its sequestration in the root tissues of affected plants. AGH786-associated plants exhibited a reduction in the severity of copper (Cu) and drought stress, with higher levels of SlCOPT (Cu transporters) and SlMT (metallothionine) gene expressions in root and shoot tissues, indicating that AGH786 contributed to resistance to copper metal toxicity and drought stress in the host S. lycopersicum L.

Publisher

Frontiers Media SA

Subject

Plant Science

Reference88 articles.

1. In vitro plant regeneration in sinapis alba and evaluation of its radical scavenging activity;Abbasi;Pakistan J. Bot.,2011

2. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective;Ahemad;Journal of King Saud University - Science,2014

3. Contamination of soil with heavy metals from industrial effluent and their translocation in green vegetables of peshawar, Pakistan;Amin;RSC Adv.,2015

4. The arabidopsis heavy metal p-type ATPase HMA5 interacts with metallochaperones and functions in copper detoxification of roots;Andrés-Colás;Plant J.,2006

5. Peeling the onion: the outer layers of Cryptococcus neoformans;Agustinho;Mem. Inst. Oswaldo. Cruz,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3