Extrinsic role of gibberellin mitigating salinity effect in different rice genotypes

Author:

Farooq Muhammad,Khan Muhammad Aaqil,Zhao Dan-Dan,Asif Saleem,Kim Eun-Gyeong,Jang Yoon-Hee,Park Jae-Ryoung,Lee In-Jung,Kim Kyung-Min

Abstract

The overall effects of gibberellic acid (GA3) with NaCl on different rice genotypes are inadequately understood. The present study determines the effect of different GA3 (50 and 100 µM) concentrations on the morphophysiological, molecular and biochemical effects of 120 mM NaCl salt stress in rice seedlings. Salt stress reduced germination percentages and seedling growth and decreased bioactive GA content. It also downregulated the relative expression of α-amylase-related genes – OsAmy1A, OsAmy1C, and OsAmy3C in the salt-sensitive IR28 cultivar. Salt stress differentially regulated the expression of GA biosynthetic genes. Salt stress increased antioxidant activity in all rice genotypes tested, except in IR28. GA3 mitigates the effect of salt stress, rescuing seed germination and growth attributes. GA3 significantly increased bioactive GA content in Nagdong and pokkali (50 µM) and Cheongcheong and IR28 (100 µM) cultivars. The α-amylase genes were also significantly upregulated by GA3. Similarly, GA3 upregulated OsGA2ox1 and OsGA2ox9 expression in the Cheongcheong and salt-sensitive IR28 cultivars. The present study demonstrated that salt stress inactivates bioactive GA – inhibiting germination and seedlings growth – and decreases bioactive GA content and GSH activity in IR28 and Pokkali cultivars. Further, GA3 significantly reversed the effects of 120 mM NaCl salt stress in different rice genotypes. The current study suggested that the known coastal area salinity concentration can be significantly recovered with the application of exogenous GA3. Thus, it could be possible to grow eco-friendly rice close to the coastal zone in order to reduce the damage caused by salinity.

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3