Shading decreases lodging resistance of wheat under different planting densities by altering lignin monomer composition of stems

Author:

Luo Yongli,Chang Yonglan,Li Chunhui,Wang Yuanyuan,Cui Haixing,Jin Min,Wang Zhenlin,Li Yong

Abstract

To clarify the influences of shading stress and planting density on the lignin monomer composition of wheat stems and their relationship with lodging resistance, Lodging resistant variety Shannong 23 (SN23) and lodging sensitive variety Shannong 16 (SN16) were grown during 2018−2019 and 2019−2020 growing seasons. The planting densities were 150 × 104 plants ha-1 (D1), 225 × 104 plants ha-1 (D2) and 300 × 104 plants ha-1 (D3). At the jointing stage, an artificial shading shed was used to simulate shading stress. Then the effects of shading on stem morphological characteristics, lignin monomer composition and lodging resistance of wheat under different planting densities were studied. Results indicate that shading at the jointing stage increased the length of basal internodes and the plant height and moved the height of center of gravity (CG) upward. Moreover, the stem diameter and the wall thickness decreased by 0.10−0.53 mm and 0.18−0.40 mm, respectively. The stem filling degree was reduced accordingly. As indicated by the correlation analysis and the stepwise regression analysis, shading-induced lodging mainly resulted from changes in the stem morphological characteristics and lignin accumulation. The influential magnitude of these factors was ordered as follows: stem filling degree, wall thickness, lignin content, contents and proportions of monomers S and H, and length of the second internode. The expression abundance of TaPAL, TaCOMT, TaCCR, and TaCAD declined in response to shading stress and high planting density. As a result, the distribution ratios of photosynthetic carbon sources to lignin monomers S, G and H were changed. The lignin content of stems on the day 42 after the jointing stage decreased by 18.48%. The monomer S content decreased, while the content and proportion of monomer H increased, thus weakening the breaking strength of wheat stems.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3