Diversity and Interrelations Among the Constitutive VOC Emission Blends of Four Broad-Leaved Tree Species at Seedling Stage

Author:

Fitzky Anne Charlott,Peron Arianna,Kaser Lisa,Karl Thomas,Graus Martin,Tholen Danny,Pesendorfer Mario,Mahmoud Maha,Sandén Hans,Rewald Boris

Abstract

Volatile organic compounds (VOCs) emitted by plants consist of a broad range of gasses which serve purposes such as protecting against herbivores, communicating with insects and neighboring plants, or increasing the tolerance to environmental stresses. Evidence is accumulating that the composition of VOC blends plays an important role in fulfilling these purposes. Constitutional emissions give insight into species-specific stress tolerance potentials and are an important first step in linking metabolism and function of co-occurring VOCs. Here, we investigate the blend composition and interrelations among co-emitted VOCs in unstressed seedlings of four broad-leaved tree species, Quercus robur, Fagus sylvatica, Betula pendula, and Carpinus betulus. VOCs of Q. robur and F. sylvatica mainly emitted isoprene and monoterpenes, respectively. B. pendula had relatively high sesquiterpene emission; however, it made up only 1.7% of its total emissions while the VOC spectrum was dominated by methanol (∼72%). C. betulus was emitting methanol and monoterpenes in similar amounts compared to other species, casting doubt on its frequent classification as a close-to-zero VOC emitter. Beside these major VOCs, a total of 22 VOCs could be identified, with emission rates and blend compositions varying drastically between species. A principal component analysis among species revealed co-release of multiple compounds. In particular, new links between pathways and catabolites were indicated, e.g., correlated emission rates of methanol, sesquiterpenes (mevalonate pathway), and green leaf volatiles (hexanal, hexenyl acetate, and hexenal; lipoxygenase pathway). Furthermore, acetone emissions correlated with eugenol from the Shikimate pathway, a relationship that has not been described before. Our results thus indicate that certain VOC emissions are highly interrelated, pointing toward the importance to improve our understanding of VOC blends rather than targeting dominant VOCs only.

Funder

Vienna Science and Technology Fund

Publisher

Frontiers Media SA

Subject

Plant Science

Reference79 articles.

1. Canopy-scale flux measurements and bottom-up emission estimates of volatile organic compounds from a mixed oak and hornbeam forest in northern Italy.;Acton;Atmos. Chem. Phys.,2016

2. Eugenol, a plant volatile, synergizes the effect of the thrips attractant, ethyl iso-nicotinate.;Binyameen;Environ. Entomol.,2018

3. Methanol exchange between grassland and the atmosphere.;Brunner;Biogeosciences,2007

4. Rapid conversion of isoprene photooxidation products in terrestrial plants.;Canaval;Commun. Earth Environ.,2020

5. The capacity for thermal protection of photosynthetic electron transport varies for different monoterpenes in Quercus ilex.;Copolovici;Plant Physiol.,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3