VaSDC1 Is Involved in Modulation of Flavonoid Metabolic Pathways in Black and Red Seed Coats in Adzuki Bean (Vigna angularis L.)

Author:

Chu Liwei,Zhao Pu,Wang Kaili,Zhao Bo,Li Yisong,Yang Kai,Wan Ping

Abstract

Seed coat colour is an important nutritional quality trait. Variations in anthocyanins and flavonoids induce the diversity of seed coat colour in adzuki bean (Vigna angularis L.). Red seed coat and black seed coat are important adzuki bean cultivars. Insights into the differences of flavonoid metabolic pathways between black and red adzuki bean are significant. In this study, we explored that the difference in seed coat colour between the red (Jingnong6) and the black (AG118) is caused by the accumulation of anthocyanins. The RNA-sequencing (RNA-Seq) and real-time reverse transcription (qRT)-PCR results showed that the Vigna angularis L. seed coat color (VaSDC1) gene, an R2R3-MYB transcription factor, should be the key gene to regulate the black and red seed coat colours. In three different colouring staes of seed development, VaSDC1 was specifically expressed in the black seed coat (AG118) landrace, which activates the structural genes of flavonoid metabolic pathways. As a result, this caused a substantial accumulation of anthocyanins and created a dark blue-black colour. In the red (Jingnong6) seed coat variety, low expression levels of VaSDC1 resulted in a lower accumulation of anthocyanins than in AG118. In addition, VaSDC1 was genetically mapped in the interval between simple-sequence repeat (SSR) markers Sca326-12, Sca326-4, and BAgs007 on chromosome 3 using an F4 segregating population derived from the cross between Jingnong6 and AG118. These results will facilitate the improvement of nutritional quality breeding in adzuki beans.

Funder

National Key Research and Development Program of China

Beijing Municipal Natural Science Foundation

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3