WheatSpikeNet: an improved wheat spike segmentation model for accurate estimation from field imaging

Author:

Batin M. A.,Islam Muhaiminul,Hasan Md Mehedi,Azad AKM,Alyami Salem A.,Hossain Md Azam,Miklavcic Stanley J.

Abstract

Phenotyping is used in plant breeding to identify genotypes with desirable characteristics, such as drought tolerance, disease resistance, and high-yield potentials. It may also be used to evaluate the effect of environmental circumstances, such as drought, heat, and salt, on plant growth and development. Wheat spike density measure is one of the most important agronomic factors relating to wheat phenotyping. Nonetheless, due to the diversity of wheat field environments, fast and accurate identification for counting wheat spikes remains one of the challenges. This study proposes a meticulously curated and annotated dataset, named as SPIKE-segm, taken from the publicly accessible SPIKE dataset, and an optimal instance segmentation approach named as WheatSpikeNet for segmenting and counting wheat spikes from field imagery. The proposed method is based on the well-known Cascade Mask RCNN architecture with model enhancements and hyperparameter tuning to provide state-of-the-art detection and segmentation performance. A comprehensive ablation analysis incorporating many architectural components of the model was performed to determine the most efficient version. In addition, the model’s hyperparameters were fine-tuned by conducting several empirical tests. ResNet50 with Deformable Convolution Network (DCN) as the backbone architecture for feature extraction, Generic RoI Extractor (GRoIE) for RoI pooling, and Side Aware Boundary Localization (SABL) for wheat spike localization comprises the final instance segmentation model. With bbox and mask mean average precision (mAP) scores of 0.9303 and 0.9416, respectively, on the test set, the proposed model achieved superior performance on the challenging SPIKE datasets. Furthermore, in comparison with other existing state-of-the-art methods, the proposed model achieved up to a 0.41% improvement of mAP in spike detection and a significant improvement of 3.46% of mAP in the segmentation tasks that will lead us to an appropriate yield estimation from wheat plants.

Funder

Australian Research Council

Publisher

Frontiers Media SA

Subject

Plant Science

Reference26 articles.

1. Improved detection and analysis of wheat spikes u sing multi-stage convolutional neural network;Batin;Dhaka Univ. J. Appl. Sci. Eng. (DUJASE),2023

2. Cascade r-cnn: high quality object detection and instance segmentation;Cai;IEEE Trans. Pattern Anal. Mach. Intell.,2019

3. Open mmlab detection toolbox and benchmark;Chen;Cornell Univ,2019

4. Deformable convolutional networks;Dai,2017

5. DwyerB. NelsonJ. SolawetzJ. Roboflow (version 1.0)2022

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3