ASP-Det: Toward Appearance-Similar Light-Trap Agricultural Pest Detection and Recognition

Author:

Wang Fenmei,Liu Liu,Dong Shifeng,Wu Suqin,Huang Ziliang,Hu Haiying,Du Jianming

Abstract

Automatic pest detection and recognition using computer vision techniques are a hot topic in modern intelligent agriculture but suffer from a serious challenge: difficulty distinguishing the targets of similar pests in 2D images. The appearance-similarity problem could be summarized into two aspects: texture similarity and scale similarity. In this paper, we re-consider the pest similarity problem and state a new task for the specific agricultural pest detection, namely Appearance Similarity Pest Detection (ASPD) task. Specifically, we propose two novel metrics to define the texture-similarity and scale-similarity problems quantitatively, namely Multi-Texton Histogram (MTH) and Object Relative Size (ORS). Following the new definition of ASPD, we build a task-specific dataset named PestNet-AS that is collected and re-annotated from PestNet dataset and also present a corresponding method ASP-Det. In detail, our ASP-Det is designed to solve the texture-similarity by proposing a Pairwise Self-Attention (PSA) mechanism and Non-Local Modules to construct a domain adaptive balanced feature module that could provide high-quality feature descriptors for accurate pest classification. We also present a Skip-Calibrated Convolution (SCC) module that can balance the scale variation among the pest objects and re-calibrate the feature maps into the sizing equivalent of pests. Finally, ASP-Det integrates the PSA-Non Local and SCC modules into a one-stage anchor-free detection framework with a center-ness localization mechanism. Experiments on PestNet-AS show that our ASP-Det could serve as a strong baseline for the ASPD task.

Publisher

Frontiers Media SA

Subject

Plant Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3