Author:
Zheng Jingming,Li Yajin,Morris Hugh,Vandelook Filip,Jansen Steven
Abstract
Globally distributed extant conifer species must adapt to various environmental conditions, which would be reflected in their xylem structure, especially in the tracheid characteristics of earlywood and latewood. With an anatomical trait dataset of 78 conifer species growing throughout China, an interspecific study within a phylogenetic context was conducted to quantify variance of tracheid dimensions and their response to climatic and soil conditions. There was a significant difference in tracheid diameter between earlywood and latewood while no significant difference was detected in tracheid wall thickness through a phylogenetically pairedt-test. Through a phylogenetic principle component analysis, Pinaceae species were found to be strongly divergent in their tracheid structure in contrast to a conservative tracheid structure in species of Cupressaceae, Taxaceae, and Podocarpaceae. Tracheid wall thickness decreased from high to low latitudes in both earlywood and latewood, with tracheid diameter decreasing for latewood only. According to the most parsimonious phylogenetic general least square models, environment and phylogeny together could explain about 21∼56% of tracheid structure variance. Our results provide insights into the effects of climate and soil on the xylem structure of conifer species thus furthering our understanding of the trees’ response to global change.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献