Stress response in tomato as influenced by repeated waterlogging

Author:

Umićević Sonja,Kukavica Biljana,Maksimović Ivana,Gašić Uroš,Milutinović Milica,Antić Marina,Mišić Danijela

Abstract

IntroductionPlants respond to water stress with a variety of physiological and biochemical changes, but their response varies among species, varieties and cultivars. Waterlogging in tomato reduces plant growth, degrade chlorophyll and increase concentration of oxidative parameters. Priming can alleviate stress in plants caused by waterlogging enabling plants to be more tolerant to an additional stress in the current or even subsequent generation. The aim of this study was to evaluate tomato genotypes for their sensitivity to waterlogging stress applied during early vegetative growth and at full flowering stage.Materials and methodsThe study included two local genotypes, Trebinjski sitni (GB1126) and Žuti (GB1129), and the reference variety Novosadski jabučar (NJ), which is the variety most commonly used in Serbia and Bosnia and Herzegovina. The activity of class III peroxidase (POX), hydrogen peroxide (H2O2) content and malondialdehyde (MDA) content were measured spectrophotometrically, and for quantification of individual phenolic compounds, targeted approach was adopted, using UHPLC/DAD/(-)HESI-MS2 instrument (Dionex UltiMate 3000 UHPLC system with a DAD detector, configured with a triple quadrupole mass spectrometer TSQ Quantum Access Max (Thermo Fisher Scientific, Germany)).Results and discussionOxidative parameters (H2O2 and MDA) exhibited an increase in content in leaves of tomato plants that underwent waterlogging stress compared to control plants. Moreover, oxidative parameters showed positive correlation with proteins and phenolics content. The obtained correlations can indicate that one of the response strategies of tomato plants to waterlogging is the increased synthesis of proteins and phenolic compounds. The POX activity was not correlated with other parameters except with the polyphenols. A positive correlation was shown between POX activity and the content of phenolic compounds, indicating their independent roles in the removal of ROS. Changes in the phenolic profiles after the exposure of plants to waterlogging stress are recorded, and these changes were more severe in leaves and fruits of GB1129 and NJ genotypes than in GB1126. Thus, genotype GB1126 is the most efficient in maintaining the phenolic profiles of leaves and fruits, and therefore of the nutritive and organoleptic qualities of fruits following the exposure to waterlogging. Also, genotype GB1126 exhibited the ability to maintain the content of oxidative parameters during waterlogging at certain growth stages, implying certain waterlogging tolerance.ConclusionWaterlogging triggered stress memory but not at all growth stages. The most pronounced stress memory was obtained in fruit samples in the phase of full fruit maturity on the 1st truss. This study shed light on the defense mechanisms of tomato plants to repeated waterlogging stress from the perspectives of the changes in the composition of major phenolics, and pointed to the 5-O-caffeoylquinic acid and rutin as the chemical markers of the waterlogging stress tolerance in tomato. However, it remains to be determined whether this modulation has a positive or negative effect on the overall plant metabolism. Further investigations are needed to fully elucidate the benefits of waterlogging pretreatment in this context.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3