OsARF4 regulates leaf inclination via auxin and brassinosteroid pathways in rice

Author:

Qiao Jiyue,Zhang Yanjun,Han ShaqiLa,Chang Senqiu,Gao Zhenyu,Qi Yanhua,Qian Qian

Abstract

Leaf inclination is a vital agronomic trait and is important for plant architecture that affects photosynthetic efficiency and grain yield. To understand the molecular mechanisms underlying regulation of leaf inclination, we constructed an auxin response factor (arf) rice mutant—osarf4—showing increased leaf inclination using CRISPR/Cas9 gene editing technology. OsARF4 encodes a nuclear protein that is expressed in the lamina joint (LJ) at different developmental stages in rice. Histological analysis indicated that an increase in cell differentiation on the adaxial side resulted in increased leaf inclination in the osarf4 mutants; however, OsARF4-overexpressing lines showed a decrease in leaf inclination, resulting in erect leaves. Additionally, a decrease in the content and distribution of indole-3-acetic acid (IAA) in osarf4 mutant led to a greater leaf inclination, whereas the OsARF4-overexpressing lines showed the opposite phenotype with increased IAA content. RNA-sequencing analysis revealed that the expression of genes related to brassinosteroid (BR) biosynthesis and response was different in the mutants and overexpressing lines, suggesting that OsARF4 participates in the BR signaling pathway. Moreover, BR sensitivity assay revealed that OsARF4-overexpressing lines were more sensitive to exogenous BR treatment than the mutants. In conclusion, OsARF4, a transcription factor in auxin signaling, participates in leaf inclination regulation and links auxin and BR signaling pathways. Our results provide a novel insight into l leaf inclination regulation, and have significant implications for improving rice architecture and grain yield.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3