Impact of irrigation water quality on human norovirus surrogate survival during leafy green production

Author:

Wu Xi,Moyne Anne-laure,Ramos Thais De Melo,Harris Linda J.,DiCaprio Erin

Abstract

IntroductionThe impact of water quality on the survival of human norovirus (NoV) was determined in irrigation water field run-off (tail water) and well water from a representative Central Coast vegetable production site in the Salinas Valley, California.MethodsTail water, well water, and ultrapure water samples were inoculated separately with two surrogate viruses for human NoV—Tulane virus (TV) and murine norovirus (MNV)—to achieve a titer of 1×105 plaque forming units (PFU)/ml. Samples were stored at 11, 19, and 24°C for 28 days. Additionally, inoculated water was applied to soil collected from a vegetable production site in the Salinas Valley or to the surface of growing romaine lettuce leaves, and virus infectivity was evaluated for 28 days in a growth chamber.ResultsVirus survival was similar for water stored at 11, 19, and 24°C and there was no difference in infectivity based on water quality. After 28 days, a maximum 1.5 log reduction was observed for both TV and MNV. TV decreased by 1.97-2.26 log and MNV decreased by 1.28- 1.48 logs after 28 days in soil; infectivity was not influenced by water type. Infectious TV and MNV were recovered from lettuce surfaces for up to 7 and 10 days after inoculation, respectively. Across the experiments there was no significant impact of water quality on the stability of the human NoV surrogates.DiscussionOverall, the human NoV surrogates were highly stable in water with a less than 1.5 log reduction over 28 days and no difference observed based on the water quality. In soil, the titer of TV declined by approximately 2 logs over 28 days, while MNV declined by 1 log during the same time interval, suggesting surrogate-specific inactivation dynamics in the soil tested in this study. A 5-log reduction in MNV (day 10 post inoculation) and TV (day 14 post inoculation) was observed on lettuce leaves, and the inactivation kinetics were not significantly impacted by the quality of water used. These results suggest that human NoV would be highly stable in water, and the quality of the water (e.g., nutrient content, salinity, and turbidity) does not significantly impact viral infectivity.

Funder

U.S. Food and Drug Administration

Publisher

Frontiers Media SA

Subject

Plant Science

Reference58 articles.

1. Mortality of enteric viruses in marine and other waters;Akin,1975

2. Oxide surfaces as environmental interfaces;Al-Abadleh;Surf Sci. Rep.,2003

3. Survival of viruses of the enterovirus group (poliomyelitis, ECHO, coxsackie) in soil and on vegetables;Bagdasaryan;J. Hyg Epidemiol. Microbiol. Immunol.,1964

4. Infection control for norovirus;Barclay;Clin. Microbiol. Infect.,2014

5. Long-term survival of hepatitis-a virus and poliovirus type 1 in mineral water;Biziagos;Appl. Environ. Microbiol.,1988

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3